Invariant subspaces and spectral mapping theorems
نویسندگان
چکیده
منابع مشابه
Sampling Theorems for Multivariate Shift Invariant Subspaces ∗
Regular and irregular sampling theorems for multivariate shift invariant subspaces are studied. We give a characterization of regular points and an irregular sampling theorem, which covers many known results, e.g., Kadec’s 1/4-theorem. We show that some subspaces may not have a regular point. We also present a reconstruction algorithm which is slightly different from the known one but is more e...
متن کاملInvariant Subspaces and Spectral Conditions on Operator Semigroups
0. Introduction. Let H be a complex Hilbert space of finite or infinite dimension, and let E be a collection of bounded linear operators on H. We say E is reducible if there exists a subspace of H, closed by definition and different from the trivial subspaces {0} and H which is invariant under every member of E . We call E triangularizable if the set of invariant subspaces under E contains a ma...
متن کاملInvariant Subspaces, Quasi-invariant Subspaces, and Hankel Operators
In this paper, using the theory of Hilbert modules we study invariant subspaces of the Bergman spaces on bounded symmetric domains and quasi-invariant sub-spaces of the Segal–Bargmann spaces. We completely characterize small Hankel operators with finite rank on these spaces.
متن کاملSpectral Mapping Theorems for Hyponormal Operators
Let T=H+iK be hyponormal and Q be a strictly monotone increasing continuous function on s(H ). We define ~ Q(T ) by ~ Q(T )=Q(H )+iK. In this paper, we show that if z is an isolated eigenvalue of ~ Q(T ), then the corresponding Riesz projection is self-adjoint. Also we introduce Xia spectrum and study the existence of an invariant subspace of an operator ~ Q(T ).
متن کاملInvariant subspaces in Simpira
In this short note we report on invariant subspaces in Simpira in the case of four registers. In particular, we show that the whole input space (respectively output space) can be partitioned into invariant cosets of dimension 56 over F 28 . These invariant subspaces are found by exploiting the non-invariant subspace properties of AES together with the particular choice of Feistel configuration....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Banach Center Publications
سال: 1994
ISSN: 0137-6934,1730-6299
DOI: 10.4064/-30-1-313-325